Thursday, 29 November 2012

linear algebra - Determinant of block matrices

I am having the following block matrix



$$\left[\begin{array}{cccc}
\mathbf{A+B} & \mathbf{B} & \cdots & \mathbf{B} \\
\mathbf{B} & \mathbf{A+B} & \cdots & \mathbf{B} \\
\vdots & \vdots & \ddots & \vdots\\
\mathbf{B} & \mathbf{B} & \cdots & \mathbf{A+B}
\end{array}\right]$$



where $\mathbf{A}$ and $\mathbf{B}$ are full rank, symmetric square matrices. There are $n$ blocks in each direction. I want to obtain the determinant of the block matrix.




I play with some examples and the determinants seems to be



$$\det(\mathbf{A})^{n-1}\det(\mathbf{A}+n\mathbf{B})$$



May I ask whether this is correct or not, and is there any proof?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...