Thursday, 9 January 2020

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$



How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule?

I know when I use lhopital I easy get

$$ \lim_{h\rightarrow 0}\frac{\cos(ah)a}{1} = a$$ but I don't know how to behave without that way


Answer



Hint:



$$\frac{\sin(ha)}{h} = a\cdot\frac{\sin(ha)}{ha}$$



Also, remember what $$\lim_{x\to 0}\frac{\sin(x)}{x}$$ is equal to?


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...