Saturday 4 January 2020

sequences and series - Proving the closed form for $sum_{k_1=0}^{infty}cdotssum_{k_n=0}^{infty}frac{1}{a^{k_1+cdots+k_n}}$, where $k_1 neqcdotsneq k_n$ and $a>1$?



I recently encountered a problem that requires us to sum the series



$$
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^i 3^j 3^k}

$$



given the condition that $i \neq j \neq k$. Upon generalizing the problem, I get this:



$$
\sum_{k_1=0}^{\infty}\sum_{k_2=0}^{\infty}\cdots\sum_{k_n=0}^{\infty} \frac{1}{a^{k_1+\cdots+k_2}} = \frac{n! \times a^n}{\prod_{i=1}^{n} (a^i - 1)}
$$



for $a>1$ and $k_1 \neq \cdots \neq k_2$, i.e. all indices are distinct at all times. Now the closed form expression (on the right hand side) for the infinite series has been obtained purely by guessing. However, I've verified that the equation works, through a computer program. The only task now left to do is to prove the formula, which I'm unable to do.


Answer




Consider the sum
$$\sum_{i=0}^{\infty}\sum_{j=i+1}^\infty\sum_{k=j+1}^\infty\frac{1}{3^i3^j3^k} = \sum_{i=0}^{\infty}\left(\frac{1}{3^i}\sum_{j=i+1}^\infty\left(\frac{1}{3^j}\left(\sum_{k=j+1}^\infty\frac{1}{3^k}\right)\right)\right) = $$$$\frac{1}{2}\sum_{i=0}^{\infty}\left(\frac{1}{3^i}\sum_{j=i+1}^\infty\left(\frac{1}{3^j}\cdot 3^{-j}\right)\right) = \frac{1}{2}\sum_{i=0}^{\infty}\left(\frac{1}{3^i}\sum_{j=i+1}^\infty\left(9^{-j}\right)\right) = $$
$$\frac{1}{2}\sum_{i=0}^{\infty}\left(\frac{1}{3^i}\cdot3^{-2i-2}\cdot\frac{9}{8}\right)= \frac{1}{16}\sum_{i=0}^\infty 3^{-3i} = \frac{1}{16}\cdot\frac{27}{26} = \frac{27}{416}$$
This is summing over all $i

To be clear, each of the intermediate steps were simply using the formula for infinite geometric series.



Now let's go for the general case. Suppose your general formula works for some $n$. Similarly, consider the sum



$$\sum_{k_1=0}^\infty \sum_{k_2=k_1+1}^\infty \sum_{k_3=k_2+1}^\infty... \sum_{k_n=k_{n-1}+1}^\infty \frac{1}{a^{k_1}a^{k_2}...a^{k_n}} = $$

(replacing $k_2$ with $k_2' = k_2-k_1-1$)
$$\sum_{k_1=0}^\infty \sum_{k_2'=0}^\infty \sum_{k_3=k_2'+k_1+2}^\infty... \sum_{k_n=k_{n-1}}^\infty \frac{1}{a^{k_1}a^{k_2'+k_1+1}...a^{k_n}} = $$
(now, replacing $k_3$ with $k_3' = k_3-k_1-1$)
$$\sum_{k_1=0}^\infty \sum_{k_2'=0}^\infty \sum_{k_3'=k_2'+1}^\infty\sum_{k_4 = k_3'+k_1+2}^\infty... \sum_{k_n=k_{n-1}}^\infty \frac{1}{a^{k_1}a^{k_2'+k_1+1}a^{k_3'+k_1+1}...a^{k_n}} = $$
(repeating this until we define $k_n'$)
$$\sum_{k_1=0}^\infty\sum_{k_2'=0}^\infty\sum_{k_3'=k_2'+1}^\infty...\sum_{k_n'=k_{n-1}'+1}^\infty \frac{1}{a^{nk_1+n-1}a^{k_2'}...a^{k_n'}} = \sum_{k_1=0}^\infty \frac{1}{a^{nk_1+n-1}}c =$$$$ \frac{ca^{1-n}}{1-a^{-n}} = \frac{ca}{a^n-1}$$
Where $c$ is simply your formula, with $n-1$ being the number of sums, without the factorial term. Just as we had to multiply by $6=3!$ above, here, we multiply by $n!$ to come to your formula.



That takes care of the inductive step. The base case should be straightforward. My apologies if any of this was unclear.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...