The integral $\displaystyle\int\limits_0^{\infty}\frac {\mathrm dx}{\sqrt{1+x^4}}$ is equal to $\displaystyle \frac{\Gamma \left(\frac{1}{4}\right)^2}{4 \sqrt{\pi }}$.
It is calculated or verified with a computer algebra system that $\displaystyle \frac{\Gamma \left(\frac{1}{4}\right)^2}{4 \sqrt{\pi }} = K\left(\frac{1}{2}\right)$ , where $K(m)$ is the complete elliptic integral of the first kind. This is in relation to what is called the elliptic integral singular value.
It is also known or verified that
$\displaystyle K\left(\frac{1}{2}\right) =\displaystyle \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{1-\frac{\sin ^2(t)}{2}}} \, dt= \frac{1}{2} \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{\sin (t) \cos (t)}} \, dt$.
Can one prove directly or analytically that
$\displaystyle\int\limits_0^{\infty}\frac {\mathrm dx}{\sqrt{1+x^4}} =\frac{1}{2} \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{\sin (t) \cos (t)}} \, dt =\displaystyle \int_0^{\frac{\pi }{2}} \frac{1}{\sqrt{1-\frac{\sin ^2(t)}{2}}} \, dt = K\left(\frac{1}{2}\right) $ ?
No comments:
Post a Comment