Thursday, 26 October 2017

real analysis - Questions on the integration inti0nftye(x2+a2/x2)dx





Let F(a):=0e(x2+a2/x2)dx with a>0. My questions are as follows:




(1) Calculate lim.




(2) Show that F'(a)=-2F(a).



(3) Calculate F(a).




It seems to me that the well-known Gaussian integral \int_0^\infty e^{-x^2}dx=\sqrt \pi/2 plays some role here. However, if I set t=x+a/x then dt=(1-a/x^2)dx. I'm stuck in finding a function f so that 1-a/x^2=f(t). For part (2), I don't quite understand how to find the derivative of F(a). It seems that we need to find the closed-form of F(a) first. Assume that I am given part (2) to solve part (3). Is it true that F(a)=e^{-2a+\ln(\sqrt \pi/2)}?



Any help would be much appreciated.


Answer



Consider

\begin{align} x^{2} + \frac{a^2}{x^{2}} = \left( x - \frac{a}{x} \right)^{2} +2a \end{align}
for which
\begin{align} I = \int_{0}^{\infty} e^{-\left(x^{2} + \frac{a^2}{x^{2}}\right)} \, dx = e^{-2a} \, \int_{0}^{\infty} e^{-\left(x - \frac{a}{x}\right)^{2}} \, dx. \end{align}
Now make the substitution t=\frac{a}{x} to obtain
\begin{align} e^{2a} I = a\int_{0}^{\infty} e^{- \left( t - \frac{a}{t} \right)^{2}} \, \frac{dt}{t^{2}}. \end{align}
Adding the two integral form leads to
\begin{align} 2 e^{2a} I = \int_{0}^{\infty} e^{- \left( t - \frac{a}{t} \right)^{2}} \left(1 + \frac{a}{t^{2}} \right) \, dt = \int_{-\infty}^{\infty} e^{- u^{2}} \, du = 2 \int_{0}^{\infty} e^{- u^{2}} \, du = \sqrt{\pi}, \end{align}
where the substitution u = t - \frac{a}{t} was made. It is now seen that
\begin{align} \int_{0}^{\infty} e^{-\left(x^{2} + \frac{a^2}{x^{2}}\right)} \, dx = \frac{\sqrt{\pi}}{2}e^{-2a}. \end{align}




Note: Above is a modified version of Evaluate \int_{0}^{\infty} \mathrm{e}^{-x^2-x^{-2}}\, dx 's accepted answer.



Answers :



(1) \lim_{a \to 0^+}F(a) = \lim_{a \to 0^+}\frac{\sqrt{\pi}}{2}e^{-2a} = \frac{\sqrt{\pi}}{2}.



(2) F'(a)=\frac{\sqrt{\pi}}{2}e^{-2a}(-2)=-2F(a).



(3) F(a)=\frac{\sqrt{\pi}}{2}e^{-2a}.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...