Sunday, 22 October 2017

combinatorics - Prove $sum_{k=0}^{n-2}{n-k choose 2} = {n+1 choose 3}$




Prove
$$\sum_{k=0}^{n-2}{n-k \choose 2} = {n+1 \choose 3}$$




Is there a relation I can use that easily yields above equation?


Answer



$$\sum_{k=0}^{n-2}\frac{k^2+k(1-2n)+n^2-1}{2}\tag{Simplify what @dixv said}$$

now, $$\sum_{k=1}^nk=\frac{n(n+1)}{2}\text{ and }\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6}$$



Hope it helps?


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...