Sunday, 4 August 2019

real analysis - Show that $e^{varepsilon |x|^{varepsilon}}$ grows faster than $sum_{k=0}^{infty} {|x|^{2k}}/{(k!)^2}$

I am wondering whether we have for $$f(x):=\sum_{k=0}^{\infty} \frac{|x|^{2k}}{(k!)^2} $$ that




$$\lim_{x \rightarrow \infty} \frac{e^{\varepsilon |x|^{\varepsilon}}}{f(x)} = \infty$$
for any $\varepsilon>0$?



I assume that this is true as factorials should somehow outgrow powers, but I do not see how to show this rigorously?



Does anybody have an idea?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...