How can I show that the sequence is defined recursively?
Show that the recursively defined sequence $(x_n)_{n\in\mathbb{N}}$ with
$$x_1=1, \qquad\qquad x_{n+1}=\sqrt{6+x_n}$$
converges and determine its limit
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment