Friday 16 August 2019

real analysis - T/F: a smooth function that grows faster than any linear function grows faster than $x^{1+epsilon}$



Prove or find a counterexample to the claim that a smooth function that grows faster than any linear function grows faster than $x^{1+\epsilon}$ for some $\epsilon>0$.



My attempt: I understand that the first part of the problem claims $\lim_{x\rightarrow \infty}\frac{g(x)}{kx} = \infty, \forall k>0$. We want to show, then, that $\exists \epsilon >0$ and constant $l>0$ such that $\lim_{x\rightarrow \infty}\frac{g(x)}{lx^{1+\epsilon}} = \infty$.



I've tried using the definition of limits, but I get stuck trying to bound the function $\frac{1}{x^\epsilon}$. Also, I've tried using L'Hopital's rule to no avail. Any ideas?



Any help is appreciated!


Answer




Hint: It is false. Find a counterexample.



Followup hint: (place your mouse on the hidden text to show it)




The function $f\colon(0,\infty)\to\mathbb{R}$ defined by $f(x) = x\ln x$ is such a counterexample.




Followup followup hint: (pretty much the solution, with some details to fill in; place your mouse on the hidden text to show it)





For any $a>0$, $\frac{x\ln x}{a x} = \frac{1}{a}\ln x \xrightarrow[x\to\infty]{} \infty$. However, for any fixed $\epsilon > 0$, $$\frac{x\ln x}{x^{1+\epsilon}} = \frac{\ln x}{x^\epsilon}=\frac{1}{\epsilon}\frac{\ln(x^\epsilon)}{x^\epsilon} = \frac{1}{\epsilon}\frac{\ln t}{t}$$ for $t=x^\epsilon \xrightarrow[x\to\infty]{}\infty$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...