Sunday 11 November 2018

calculus - Show that $a_n



We define $a_1=1$ and $a_{n+1}=\dfrac{1}{2}\left(a_n+\dfrac{2}{a_n}\right)$.



I want to prove that $a_n$ converges. But first I'd like to show that $a_n<\sqrt{2}$ for every $n\in\mathbb{N}$.



I try to use induction. For a fixed $n$, I suppose that $a_n<\sqrt{2}$.



Any hint to prove that $a_{n+1}=\dfrac{1}{2}\left(a_n+\dfrac{2}{a_n}\right)<\sqrt{2}$?




Thanks.


Answer



We have:
$$ 2 a_n a_{n+1} = a_n^2 + 2, $$
from which it follows that:
$$ a_{n+1}^2-2 = (a_{n+1}-a_n)^2 = \left(\frac{1}{a_n}-\frac{a_n}{2}\right)^2 = \left(\frac{a_n^2-2}{2a_n}\right)^2 > 0, $$
so $a_n > \sqrt{2}$ for every $n > 1$. If we set $b_n = a_{n+1}^2-2$, we have $b_1=\frac{1}{4},b_n>0$ and:
$$ b_n = \frac{b_{n-1}^2}{4a_n^2} = \frac{b_{n-1}^2}{4(b_{n-1}+2)} \leq \frac{b_{n-1}^2}{8}, $$
from which it follows that the sequence $\{b_n\}_{n\geq 1}$ decreases very fast towards zero. For instance, $b_1=\frac{1}{4}$ and the last inequality imply, by induction:
$$ b_n \leq \frac{1}{2^{5\cdot 2^{n-1}-3}}.$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...