Tuesday 6 November 2018

sequences and series - Convergence of $sum^{infty}_{n=1}frac{2}{sqrt{n}+2}$



In the Comparison Tests section of my textbook, I am tasked with determining the convergence of the series $$\sum^{\infty}_{n=1}\frac{2}{\sqrt{n}+2}$$



I will argue the series diverges using the "Limit" Comparison test.




Consider $$a_n=\frac{2}{\sqrt{n}+2}$$ and $$b_n=\frac{1}{\sqrt{n}}$$ Note: The latter series $b_n$ is a divergent $p$-series with $p=\frac{1}{2}.
$



If $$\lim_{n\rightarrow\infty}\frac{a_n}{b_n}=c$$ where $c>0$, then either both $a_n$ and $b_n$ converge, or both $a_n$ and $b_n$ diverge.



Thus $$\lim_{n\rightarrow\infty}\frac{a_n}{b_n}=\lim_{n\rightarrow\infty}\frac{2\sqrt{n}}{\sqrt{n}+2}=\lim_{n\rightarrow\infty}\frac{2}{1+\frac{2}{\sqrt{n}}}=2$$



Since the above limit existed as a finite value $c=2>0$ and since $\sum b_n$ diverges ($p$-series with $p=\frac{1}{2}$):





$$\sum^{\infty}_{n=1}\frac{2}{\sqrt{n}+2}\space\text{diverges}$$




However, from the beginning I can see the asymptotic equivalence: $$\frac{2}{\sqrt{n}+2}\sim\frac{1}{\sqrt{n}}$$ Why do I need the limit comparison test when I can deduce the result quickly upon inspection? Thanks in advance!


Answer



Note that $$\frac{2}{\sqrt{n}+2}\geq \frac{1}{\sqrt{n}}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...