Monday, 26 November 2018

linear algebra - Given any two $n times n$ matrices $A$ and $B$ can we always find $c neq 0$ and $Y neq 0$ such that $AY = cBY$ is true?

Given any two $n \times n$ matrices $A$ and $B$ can we always find a scalar $c \neq 0$ and $n \times 1$ vector $Y \neq 0$ such that $AY = cBY$ is true ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...