How can we prove
sin(A1+A2+...+An)=cosA1.cos(A2)...cos(An)[S1−S3+S5...]
where Sn denotes sum of tangents of angles taken n at a time.
I tried proving it but failed. I can derive it easily for n = 2 and 3 but not for general case. Wikipedia has same kind of formula for tangent but it is not derived.
https://en.m.wikipedia.org/wiki/List_of_trigonometric_identities
Please give a very simple detailed proof.
Tuesday, 13 November 2018
trigonometry - How to prove this trigonometric identity of sine of n angles as sum?
Subscribe to:
Post Comments (Atom)
real analysis - How to find limhrightarrow0fracsin(ha)h
How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Ok, according to some notes I have, the following is true for a random variable X that can only take on positive values, i.e P(X \int_0^...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
The question said: Use the Euclidean Algorithm to find gcd (1207,569) and write (1207,569) as an integer linear combination of 1207 ...
No comments:
Post a Comment