Friday, 9 November 2018

linear algebra - Roots of a polynomial with real cofficients

Good evening;



Let $\alpha, \beta \in\mathbb{R}$, $n\in\mathbb{N}$. Please can you help me to prove that every polynomial of the form



$$ f(x)=x^{n+3}+\alpha x+\beta $$



admits at most 3 reals roots. Thank you for help.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...