Good evening;
Let $\alpha, \beta \in\mathbb{R}$, $n\in\mathbb{N}$. Please can you help me to prove that every polynomial of the form
$$ f(x)=x^{n+3}+\alpha x+\beta $$
admits at most 3 reals roots. Thank you for help.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment