Tuesday, 27 November 2018

real analysis - About the $lim_{x rightarrow infty}(ln{x}-x)$




Find the $\lim_{x \rightarrow \infty}(\ln{x}-x)$.





We know that $\ln{x}=o(x)$ as ${x \rightarrow \infty}$ therefore we can guess that the limit will be $-\infty$.



Intuitively $x$ goes to infinity way faster than $\ln{x}$.



Here it is my formal proof of this:



We have that $\lim_{x \rightarrow \infty} \frac{x}{2\ln{x}}=+ \infty$ thus form the definition, $\exists a>0$ such that $x> 2\ln{x}$ forall $x>a$.



Now from this,$\forall x>a$, we deduce that $x- \ln{x} > 2 \ln{x}-\ln{x}=\ln{x} \Rightarrow \ln{x}-x < - \ln{x}$




Finally we have $\limsup_{x \rightarrow \infty} (\ln{x}-x) \leqslant - \infty$



Thus $\limsup_{x \rightarrow \infty} (\ln{x}-x)=\liminf_{x \rightarrow \infty} (\ln{x}-x)= -\infty$ .



Is my argument correct?



Thank you in advance!


Answer



for $x>0$,




$$\ln (x)-x=x (\frac {\ln (x)}{x}-1)$$



and $$\lim_{x\to+\infty}\frac {\ln (x)}{x}=0$$



thus



$$\lim_{+\infty}(\ln (x)-x)=-\infty $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...