Find the $\lim_{x \rightarrow \infty}(\ln{x}-x)$.
We know that $\ln{x}=o(x)$ as ${x \rightarrow \infty}$ therefore we can guess that the limit will be $-\infty$.
Intuitively $x$ goes to infinity way faster than $\ln{x}$.
Here it is my formal proof of this:
We have that $\lim_{x \rightarrow \infty} \frac{x}{2\ln{x}}=+ \infty$ thus form the definition, $\exists a>0$ such that $x> 2\ln{x}$ forall $x>a$.
Now from this,$\forall x>a$, we deduce that $x- \ln{x} > 2 \ln{x}-\ln{x}=\ln{x} \Rightarrow \ln{x}-x < - \ln{x}$
Finally we have $\limsup_{x \rightarrow \infty} (\ln{x}-x) \leqslant - \infty$
Thus $\limsup_{x \rightarrow \infty} (\ln{x}-x)=\liminf_{x \rightarrow \infty} (\ln{x}-x)= -\infty$ .
Is my argument correct?
Thank you in advance!
Answer
for $x>0$,
$$\ln (x)-x=x (\frac {\ln (x)}{x}-1)$$
and $$\lim_{x\to+\infty}\frac {\ln (x)}{x}=0$$
thus
$$\lim_{+\infty}(\ln (x)-x)=-\infty $$
No comments:
Post a Comment