Monday, 17 June 2019

calculus - Evaluate limxto0frac1cos(sin(4x))sin2(sin(3x)) without L'Hospital




lim



How can I evaluate this limit without using the L'Hospital Rule? I've expanded \sin(4x) as \sin(2x+2x), \sin(3x) = \sin(2x + x), but none of these things worked.


Answer



The simplest way is to note \sin x \simeq x for small x and \cos x \simeq 1-\frac{x^2}{2} for small x. Then, you can obtain
\frac{1-\cos\sin 4x}{\sin^2\sin 3x} \simeq \frac{1-\cos 4x}{\sin^2 3x} \simeq \frac{8x^2}{9x^2} = \frac{8}{9}.
You need to use Taylor series to formalize this type of argument.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...