Sunday, 30 June 2019

inequality - Find the minimum value of $f(x,y,z)=frac{x^2}{(x+y)(x+z)}+frac{y^2}{(y+z)(y+x)}+frac{z^2}{(z+x)(z+y)}$.



Find the minimum value of $f(x,y,z)=\frac{x^2}{(x+y)(x+z)}+\frac{y^2}{(y+z)(y+x)}+\frac{z^2}{(z+x)(z+y)}$ for all notnegative value of $x,y,z$.



I think that minimum value is $\frac{3}{4}$ when $x=y=z$ but I have no prove.



Answer



By C-S $$\sum_{cyc}\frac{x^2}{(x+y)(x+z)}\geq\frac{(x+y+z)^2}{\sum\limits_{cyc}(x+y)(x+z)}=\frac{\sum\limits_{cyc}(x^2+2xy)}{\sum\limits_{cyc}(x^2+3xy)}\geq\frac{3}{4},$$
where the last inequality it's $$\sum_{cyc}(x-y)^2\geq0.$$
The equality occurs for $x=y=z$, which says that we got a minimal value.



Another way:



We need to prove that:
$$4\sum_{cyc}x^2(y+z)\geq3\prod_{cyc}(x+y)$$ or
$$\sum_{cyc}(x^2y+x^2z-2xyz)\geq0$$ or

$$\sum_{cyc}z(x-y)^2\geq0.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...