I tried l'Hospital but that will require a lot (and I mean A LOT!!!) of differentiating
Is there a shortcut?
lim
Thanks in advance
Answer
Of course there is!
\sin x \sim x - \frac{x^3}{6}
\sin^2 x \sim x^2 - \frac{x^4}{3}
So \mathop {\lim }\limits_{x \to 0} \left( {{1 \over {{{\sin }^2}x}} - {1 \over {{x^2}}}} \right)
= \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \cdot \sin^2 x} = \lim_{x \to 0} \frac{\frac{x^4}{3}}{x^4 - \frac{x^6}{3}} = \frac{1}{3}
(cause also x^4 \pm x^6 \sim x^4 if x \to 0)
No comments:
Post a Comment