Tuesday, 18 June 2019

calculus - Evaluate mathoplimlimitsxto0left(1oversin2x1overx2right)



I tried l'Hospital but that will require a lot (and I mean A LOT!!!) of differentiating




Is there a shortcut?
lim



Thanks in advance


Answer



Of course there is!



\sin x \sim x - \frac{x^3}{6}




\sin^2 x \sim x^2 - \frac{x^4}{3}



So \mathop {\lim }\limits_{x \to 0} \left( {{1 \over {{{\sin }^2}x}} - {1 \over {{x^2}}}} \right)
= \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \cdot \sin^2 x} = \lim_{x \to 0} \frac{\frac{x^4}{3}}{x^4 - \frac{x^6}{3}} = \frac{1}{3}



(cause also x^4 \pm x^6 \sim x^4 if x \to 0)


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...