Tuesday, 18 June 2019

calculus - Evaluate $mathop {lim }limits_{x to 0} left( {{1 over {{{sin }^2}x}} - {1 over {{x^2}}}} right)$



I tried l'Hospital but that will require a lot (and I mean A LOT!!!) of differentiating




Is there a shortcut?
$$\mathop {\lim }\limits_{x \to 0} \left( {{1 \over {{{\sin }^2}x}} - {1 \over {{x^2}}}} \right)$$



Thanks in advance


Answer



Of course there is!



$$\sin x \sim x - \frac{x^3}{6}$$




$$\sin^2 x \sim x^2 - \frac{x^4}{3}$$



So $$\mathop {\lim }\limits_{x \to 0} \left( {{1 \over {{{\sin }^2}x}} - {1 \over {{x^2}}}} \right)$$
$$= \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \cdot \sin^2 x} = \lim_{x \to 0} \frac{\frac{x^4}{3}}{x^4 - \frac{x^6}{3}} = \frac{1}{3}$$



(cause also $x^4 \pm x^6 \sim x^4$ if $x \to 0$)


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...