The problem i came across is the evaluation of $$\int_0^\infty\frac{\sin x}{x}\,dx$$ I chose the function $f(z) = \dfrac{e^{iz}}{z}$ and took a contour of $[\varepsilon , R ] + [R , R+iy] + [-R+iy , R+iy] + [-R,-R+iy]+[-R, -\varepsilon]$ . The problem is how do I continue now to find integrals on each of these segments ?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment