$3^2+2=11$
$33^2+22=1111$
$333^2+222=111111$
$3333^2+2222=11111111$
$\vdots$
The pattern here is obvious, but I could not have a proof.
Prove that $\underset{n\text{ }{3}\text{'s}}{\underbrace{333\dots3}}^2+\underset{n\text{ }{2}\text{'s}}{\underbrace{222\dots2}}=\underset{2n\text{ }{1}\text{'s}}{\underbrace{111\dots1}}$ for any natural number $n$.
Dear, I am not asking you to prove, I just want a hint, how to start proving it. Thanks.
No comments:
Post a Comment