Friday, 28 June 2019

number theory - $3^2+2=11$, $33^2+22=1111$, $333^2+222=111111$, and so on.

$3^2+2=11$



$33^2+22=1111$



$333^2+222=111111$




$3333^2+2222=11111111$



$\vdots$



The pattern here is obvious, but I could not have a proof.




Prove that $\underset{n\text{ }{3}\text{'s}}{\underbrace{333\dots3}}^2+\underset{n\text{ }{2}\text{'s}}{\underbrace{222\dots2}}=\underset{2n\text{ }{1}\text{'s}}{\underbrace{111\dots1}}$ for any natural number $n$.





Dear, I am not asking you to prove, I just want a hint, how to start proving it. Thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...