Let f\colon (0,\alpha)\to \def\R{\mathbf R}\R satisfy f(x + y)=f(x)+f(y)
for all x,y,x + y \in (0,\alpha), where \alpha is a positive real number. Show that there exists an additive function A \colon \R \to \R such that A(x) = f(x) for all x \in (0, \alpha).
Simply I want to define a function A In specific form as an extension of the function f wich is additive functional equation. I tried to define the function A .
Answer
Let x > 0. Choose n \in \def\N{\mathbf N}\N with \frac xn < \alpha. Define A(x) := nf(\frac xn). Note that this is well-defnined: If m\in \N is another natural number such that \frac xm < \alpha, we have
\begin{align*} mf\left(\frac xm\right) &= mf\left(\sum_{k=1}^n \frac x{mn}\right)\\ &= m\sum_{k=1}^n f\left(\frac x{mn}\right)\\ &= \sum_{l=1}^m n f\left(\frac x{mn}\right)\\ &= nf\left(\sum_{l=1}^m \frac x{mn}\right)\\ &= nf\left(\frac x{n}\right). \end{align*}
For x < 0 choose n \in \N with \frac xn > -\alpha and define A(x) := -nf(-\frac xn), finally, let A(0) = 0. Then A is an extension of f, to show that it is additive, let x,y \in \def\R{\mathbf R}\R. Choose n \in \N such that \frac xn, \frac yn, \frac{x+y}n \in (-\alpha, \alpha). We have if x,y \ge 0:
\begin{align*} A(x+y) &= nf\left(\frac{x+y}n\right)\\ &= nf\left(\frac xn\right) + nf\left(\frac yn\right)\\ &= A(x) + A(y) \end{align*}
If both x,y \le 0, we argue along the same lines. Now suppose x \ge 0, y \le 0, x+y \ge 0. We have A(y) = -A(-y) be definition of A. Hence
\begin{align*} -A(y) + A(x+y) &= A(-y) + A(x+y)\\ &= A(-y+x+y)\\ &= A(x). \end{align*}
If x \ge 0, y \le 0, x+y \le 0, we have -x \le 0 and
\begin{align*} -A(x) + A(x+y) &= A(-x) + A(x+y)\\ &= A(y) \end{align*}
No comments:
Post a Comment