Wednesday, 18 March 2015

limits - How to find $lim_{x to 0}frac{cos(ax)-cos(bx) cos(cx)}{sin(bx) sin(cx)}$



How to find $$\lim_\limits{x \to 0}\frac{\cos (ax)-\cos (bx) \cos(cx)}{\sin(bx) \sin(cx)}$$



I tried using L Hospital's rule but its not working!Help please!


Answer



Before using L'Hospital, turn the products to sums




$$\frac{\cos(ax)-\cos(bx)\cos(cx)}{\sin(bx)\sin(cx)}=\frac{2\cos(ax)-\cos((b-c)x)-\cos((b+c)x)}{\cos((b-c)x)-\cos((b+c)x)}.$$



Then by repeated application
$$\frac{2a\sin(ax)-(b-c)\sin((b-c)x)-(b+c)\sin((b+c)x)}{(b-c)\sin((b-c)x)-(b+c)\sin((b+c)x)},$$
and
$$\frac{2a^2\cos(ax)-(b-c)^2\cos((b-c)x)-(b+c)^2\cos((b+c)x)}{(b-c)^2\cos((b-c)x)-(b+c)^2\cos((b+c)x)}.$$



The limit is




$$\frac{2a^2-(b-c)^2-(b+c)^2}{(b-c)^2-(b+c)^2}=-\frac{a^2-b^2-c^2}{2bc}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...