Friday, 13 March 2015

integration - Computing intlimitspi/201over1+8sin2(tanx)dx



I’m trying to evaluateπ/20dx11+8sin2(tanx)And made the substitution u=tanx. ThereforeI=0dx1(1+x2)(1+8sin2x)Through some manipulations, you arrive atI=0dx1(1+x2)(54cos2x)However, I’m confused what to do after that. The answer key started with0dx1(1+x2)(54cos2x)=0dx11+x2(13+23k1cos2kx2k)However, I’m confused where they got the infinite sum from. Any ideas?


Answer



It is just a geometric series in disguise. You may consider that



k0cos(2kx)2k=Rek0(e2ix2)k=Re(22e2ix)=2Re(2e2ix54cos(2x))
equals 454cos(2x). In particular




+0dx(1+x2)(54cos(2x))=π6+23k112k+0cos(2kx)1+x2dx=π6+23k1π2k+1e2k=π62e2+12e21.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...