Monday, 30 March 2015

real analysis - A series that gives inconclusive results by the root & ratio tests, but converges STRONGLY.



I'm trying to come up with a positive sequence $\{a_n\}_1^\infty$ such that $\lim_{n\to\infty} \left(\sqrt[\leftroot{-2}\uproot{2}n]{a_n}\right) =

\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$, but $\forall \alpha > 0$ the series $\sum_1^\infty a_n n^\alpha$ converges. I know $1/n^n$ goes to zero faster than $n^\alpha$ goes to infinity, but it converges by the two tests. I've tried screwing around with $1/n^n$ but had no luck. Any thoughts?


Answer



If $a_n=e^{-\sqrt{n}}$ then
$$ \lim_{n\to\infty}a_n^{\frac{1}{n}}=\lim_{n\to\infty}e^{-\frac{1}{\sqrt{n}}}=1$$
and
$$ \lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\exp[\sqrt{n+1}-\sqrt{n}]=1$$
However,
$$ \lim_{x\to\infty}x^{\beta}e^{-\sqrt{x}}=\lim_{y\to\infty}y^{2\beta}e^{-y}=0$$
for all $\beta>0$, so taking $\beta=\alpha+2$ and using the limit comparison test (comparing to $\frac{1}{n^2}$) it follows that $\sum n^{\alpha}e^{-\sqrt{n}}$ converges for all $\alpha>0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...