I'm currently struggling at calculation the Fourier series of the given function
sin(x)2cos(x)3
Given Euler's identity, I thought that using the exponential approach would be the easiest way to do it.
What I found was: −132((exp(2ix)−2exp(2ix)+exp(−2ix))(exp(3ix)+3exp(ix)+3exp(−ix)+exp(−3ix)))
Transforming it back, the result is:
−118(cos(5x)+cos(3x)+2cos(x))
(I've checked my calculations multiple times, I'm pretty sure it's correct.)
Considering the point x=0 however, one can see that the series I found doesn't match the original function.
Could someone help me find my mistake?
Answer
1) Trigonometric identities:
sin2xcos3x=(sinxcosx)2cosx=(sin2x2)2cosx=14sin22xcosx
=14(1−cos4x2)cosx=cosx8−cos4xcosx8
=cosx8−cos5x+cos3x16
=cosx8−cos3x16−cos5x16
2) Complex exponential:
sin2xcos3x=(eix−e−ix2i)2(eix+e−ix2)3
=−132(e2ix−2+e−2ix)(e3ix+3eix+3e−ix+e−3ix)
=−132(e5ix+e3ix−2eix−2e−ix+e−3ix+e−5ix)
=−132(2cos5x+2cos3x−4cosx)
=116(2cosx−cos3x−cos5x)
Note: you made a mistake when you expanded (eix−e−ix)2. I have no idea how you ended up with this 18. You probably meant 16.
No comments:
Post a Comment