Friday, 27 April 2018

trigonometry - Finding a closed form for $cos{x}+cos{3x}+cos{5x}+cdots+cos{(2n-1)x}$




We have to find




$$g(x)=\cos{x}+\cos{3x}+\cos{5x}+\cdots+\cos{(2n-1)x}$$




I could not get any good idea .



Intialy I thought of using




$$\cos a+\cos b=2\cos(a+b)/2\cos (a-b)/2$$


Answer



Let $z=\cos\theta+i\sin\theta$ i.e. $z=e^{i\theta}$



Your sum:$$e^{i\theta}+e^{3i\theta}+e^{5i\theta}+...e^{(2n-1)i\theta}$$



This is a GP with common ratio $e^{2i\theta}$



Therefore sum is $$\frac{a(r^n-1)}{r-1}$$

$$\frac{e^{i\theta}(e^{2ni\theta}-1)}{e^{2i\theta}-1}$$
$$\frac{(\cos \theta+i\sin\theta)(\cos(2n\theta)+i\sin\theta-1)}{\cos(2\theta)+i\sin(2\theta)-1}$$



Computing it's real part should give you the answer



Acknowledgement:Due credits to @LordShark Idea


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...