If $A$ and $B$ are square matrices such that $AB = I$, where $I$ is the identity matrix, show that $BA = I$.
I do not understand anything more than the following.
- Elementary row operations.
- Linear dependence.
- Row reduced forms and their relations with the original matrix.
If the entries of the matrix are not from a mathematical structure which supports commutativity, what can we say about this problem?
P.S.: Please avoid using the transpose and/or inverse of a matrix.
Answer
Dilawar says in 2. that he knows linear dependence! So I will give a proof, similar to that of TheMachineCharmer, which uses linear independence.
Suppose each matrix is $n$ by $n$. We consider our matrices to all be acting on some $n$-dimensional vector space with a chosen basis (hence isomorphism between linear transformations and $n$ by $n$ matrices).
Then $AB$ has range equal to the full space, since $AB=I$. Thus the range of $B$ must also have dimension $n$. For if it did not, then a set of $n-1$ vectors would span the range of $B$, so the range of $AB$, which is the image under $A$ of the range of $B$, would also be spanned by a set of $n-1$ vectors, hence would have dimension less than $n$.
Now note that $B=BI=B(AB)=(BA)B$. By the distributive law, $(I-BA)B=0$. Thus, since $B$ has full range, the matrix $I-BA$ gives $0$ on all vectors. But this means that it must be the $0$ matrix, so $I=BA$.
No comments:
Post a Comment