Find the limits without L'Hôpital's rule
$$\lim_{ x \to 0 }\frac{x-\sin x}{x-\tan x}=? $$
My Try:
$$\lim_{ x \to 0 }\frac{\sin(\pi-x)-\sin x}{\tan(\pi+x)-\tan x}=?\\\lim_{ x \to 0 }\frac{2\sin(\frac{\pi}{2}-x)\cos(\frac{\pi}{2})}{\frac{\sin(\frac{π}{2}-x)}{\cos(\pi+x)\cos(x)}}=\lim_{ x \to 0 }\frac{(2\cos x)(-\cos x)(\cos(\frac{\pi}{2}))}{\cos x}=0$$
but:
$$\lim_{ x \to 0 }\frac{x-\sin x}{x-\tan x}=-1/2$$
Where is my mistake?
Saturday, 14 April 2018
Find the limits without L'Hôpital:$lim_{ x to 0 }frac{x-sin x}{x-tan x}=? $
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment