Thursday, 12 April 2018

lebesgue integral - Condition for integrability on finite measure space

Let $(X,\mathcal{F},\mu)$ be a finite measure space. If $f:X\rightarrow \mathbb{R}$ is a measurable real function, show that, $f\in L^1(\mu)$ iff $\sum\limits_{n=0}^{\infty}\mu(\{f\geq n\})<\infty$. Am a bit stuck on the $(\Leftarrow)$ direction so any help is appreciated, thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...