Wednesday, 18 April 2018

sequences and series - Show $lim_{n->infty} (3sqrt{n})^{frac{1}{2n}}=1$ (no L'hopital).

I need show $\lim_{n->\infty} (3\sqrt{n})^{\frac{1}{2n}}=1$ in a course of Real Analysis, but I can't use derivative. Can you give me a hit?



I can use:





  • Squeeze theorem

  • Convergence with εε-δδ

  • Sequential convergence

  • The notion of a monotone increasing/decreasing function



Limit laws no. Thanks in advance.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...