Wednesday, 9 May 2018

calculus - Prove $sum_{n geq 0}c_n$ converges iff $sum_{k geq 0}(c_{2k}+c_{2k+1})$ converges



Suppose the sequence $\{c_n\}$ converges to zero. Prove $\sum_{n \geq 0}c_n$ converges iff $\sum_{k \geq 0}(c_{2k}+c_{2k+1})$ converges. Moreover, if the two series converge then they have the same limit.



I was thinking that if $$\lim_{n \rightarrow \infty}c_n \neq 0$$
Then the statement can't be true. Like the sequence
$$1, -1, 1 ,-1 , 1 ,-1, \cdots$$

So $$\sum_{k \geq 0}(c_{2k}+c_{2k+1})=0$$
which is convergent, but
$$\sum_{n \geq 0}c_n \text{does not exists}$$
So how could we prove under the assumption $\lim_{n \rightarrow \infty}c_n=0$? Many thanks~


Answer



If $\sum_{n=0}^{\infty}c_n = a$ then we have $$S_n = \sum_{k=0}^n c_k \to a.$$ So, $$ \sum_{k=0}^n (c_{2k} + c_{2k+1}) = S_{2n+1} \to a. $$



I'll let you handle the (slightly messier) other direction.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...