I have been trying to evaluate the following family of integrals:
f:(0,∞)2→R,f(α,β)=∞∫0ln(1+xα)ln(1+x−β)xdx.
The changes of variables 1x→x, xα→x and xβ→x yield the symmetry properties
f(α,β)=f(β,α)=1αf(1,βα)=1αf(βα,1)=1βf(αβ,1)=1βf(1,αβ)
for α,β>0 .
Using this result one readily computes f(1,1)=2ζ(3) . Then (1) implies that
f(α,α)=2αζ(3)
holds for α>0 . Every other case can be reduced to finding f(1,γ) for γ>1 using (1).
An approach based on xpaul's answer to this question employs Tonelli's theorem to write
f(1,γ)=∞∫01∫01∫0dudvdx(1+ux)(v+xγ)=1∫01∫0∞∫0dxdudv(1+ux)(v+xγ).
The special case f(1,2)=πC−38ζ(3) is then derived via partial fraction decomposition (C is Catalan's constant). This technique should work at least for γ∈N (it also provides an alternative way to find f(1,1)), but I would imagine that the calculations become increasingly complicated for larger γ .
Mathematica manages to evaluate f(1,γ) in terms of C, ζ(3) and an acceptably nice finite sum of values of the trigamma function ψ1 for some small, rational values of γ>1 (before resorting to expressions involving the Meijer G-function for larger arguments). This gives me some hope for a general formula, though I have not yet been able to recognise a pattern.
Therefore my question is:
How can we compute f(1,γ) for general (or at least integer/rational) values of γ>1 ?
Update 1:
Symbolic and numerical evaluations with Mathematica strongly suggest that
f(1,n)=1n(2π)n−1Gn+3,n+1n+3,n+3(0,0,1n,…,n−1n,1,10,0,0,0,1n,…,n−1n|1)
holds for n∈N . These values of the Meijer G-function admit an evaluation in terms of ζ(3) and ψ1(1n),…,ψ1(n−1n) at least for small (but likely all) n∈N .
Interesting side note: The limit
lim
follows from the definition.
Update 2:
Assume that m, n \in \mathbb{N} are relatively prime (i.e. \gcd(m,n) = 1). Then the expression for f(m,n) given in Sangchul Lee's answer can be reduced to
\begin{align} f(m,n) &= \frac{2}{m^2 n^2} \operatorname{Li}_3 ((-1)^{m+n}) \\ &\phantom{=} - \frac{\pi}{4 m^2 n} \sum \limits_{j=1}^{m-1} (-1)^j \csc\left(j \frac{n}{m} \pi \right) \left[\psi_1 \left(\frac{j}{2m}\right) + (-1)^{m+n} \psi_1 \left(\frac{m + j}{2m}\right) \right] \\ &\phantom{=} - \frac{\pi}{4 n^2 m} \sum \limits_{k=1}^{n-1} (-1)^k \csc\left(k \frac{m}{n} \pi \right) \left[\psi_1 \left(\frac{k}{2n}\right) + (-1)^{n+m} \psi_1 \left(\frac{n + k}{2n}\right) \right] \\ &\equiv F(m,n) \, . \end{align}
Further simplifications depend on the parity of m and n.
This result can be used to obtain a solution for arbitrary rational arguments: For \frac{n_1}{d_1} , \frac{n_2}{d_2} \in \mathbb{Q}^+ equation (1) yields
\begin{align} f\left(\frac{n_1}{d_1},\frac{n_2}{d_2}\right) &= \frac{d_1}{n_1} f \left(1,\frac{n_2 d_1}{n_1 d_2}\right) = \frac{d_1}{n_1} f \left(1,\frac{n_2 d_1 / \gcd(n_1 d_2,n_2 d_1)}{n_1 d_2 / \gcd(n_1 d_2,n_2 d_1)}\right) \\ &= \frac{d_1 d_2}{\gcd(n_1 d_2,n_2 d_1)} f\left(\frac{n_1 d_2}{\gcd(n_1 d_2,n_2 d_1)},\frac{n_2 d_1}{\gcd(n_1 d_2,n_2 d_1)}\right) \\ &= \frac{d_1 d_2}{\gcd(n_1 d_2,n_2 d_1)} F\left(\frac{n_1 d_2}{\gcd(n_1 d_2,n_2 d_1)},\frac{n_2 d_1}{\gcd(n_1 d_2,n_2 d_1)}\right) \, . \end{align}
Therefore I consider the problem solved in the case of rational arguments. Irrational arguments can be approximated by fractions, but if anyone can come up with a general solution: you are most welcome to share it. ;)
Answer
Only a comment. We have
\int_{0}^{\infty} \frac{\log(1+\alpha x)\log(1+\beta/x)}{x} \, dx = 2\operatorname{Li}_3(\alpha\beta) - \operatorname{Li}_2(\alpha\beta)\log(\alpha\beta)
which is valid initially for \alpha, \beta > 0 and extends to a larger domain by the principle of analytic continuation. Then for integers m, n \geq 1 we obtain
\begin{align*} f(m, n) &=\int_{0}^{\infty} \frac{\log(1+x^m)\log(1+x^{-n})}{x}\,dx \\ &\hspace{6em} = \sum_{j=0}^{m-1}\sum_{k=0}^{n-1} \left[ 2\operatorname{Li}_3\left(e^{i(\alpha_j+\beta_k)}\right) - i(\alpha_j+\beta_k)\operatorname{Li}_2\left(e^{i(\alpha_j+\beta_k)}\right) \right], \end{align*}
where \alpha_j = \frac{2j-m+1}{n}\pi and \beta_k = \frac{2k-n+1}{n}\pi. (Although we cannot always split complex logarithms, this happens to work in the above situation.) By the multiplication formula, this simplifies to
\begin{align*} f(m, n) &= \frac{2\gcd(m,n)^3}{m^2n^2}\operatorname{Li}_3\left((-1)^{(m+n)/\gcd(m,n)}\right) \\ &\hspace{2em} - \frac{i}{n} \sum_{j=0}^{m-1} \alpha_j \operatorname{Li}_2\left((-1)^{n-1}e^{in\alpha_j}\right) \\ &\hspace{2em} - \frac{i}{m} \sum_{k=0}^{n-1} \beta_k \operatorname{Li}_2\left((-1)^{m-1}e^{im\beta_k}\right). \end{align*}
Here, \gcd(m,n) is the greatest common divisor of m and n.
The following code tests the above formula.
No comments:
Post a Comment