Friday, 25 May 2018

real analysis - Prove the convergence of a sequence based on sub-sequence



Suppose that every convergent sub-sequence of $a_n$ converges to zero. Prove that $a_n$ converges to zero.



I tried to prove this statement using the definition of limit. From the question, I know that $a_{n_k}$ converges to zero $\forall$ k $\in$ N. I want to show that $\forall \epsilon > 0, \exists N \in$ natural number such that $\forall n > N$, we have |$a_n - 0$| $< \epsilon$


Answer



First of all, $(a_{n})$ must be bounded, if not, one can find some $|a_{n_{k}}|$ such that $|a_{n_{k}}|\rightarrow\infty$, if your convergence includes the sort of infinity, then this violates the assumption.



Now let a subsequence $(a_{n_{k}})$ such that $\lim_{k\rightarrow\infty}|a_{n_{k}}|=\limsup_{n\rightarrow\infty}|a_{n}|$, so by assumption $\limsup_{n\rightarrow\infty}|a_{n}|=0$. Hence $0\leq\liminf_{n\rightarrow\infty}|a_{n}|\leq\limsup_{n\rightarrow\infty}|a_{n}|=0$ and we have then $\lim_{n\rightarrow\infty}|a_{n}|=0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...