I am given this equation:
$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$
I want to prove it: what i did is
I take any $a \in f^{-1}(B_1 \cap B_2)$, then there is $b \in (B_1 \cap B_2)$ so that $f(a)=b$. Because of $b \in (B_1 \cap B_2)$, it is true that $b \in B_1$ and $b \in B_2$, so $a \in f^{-1}(B_1)$ and $a \in f^{-1}(B_2)$.
this means $f^{-1}(B_1 \cap B_2) \subseteq f^{-1}(B_1) \cap f^{-1}(B_2)$.
is it ok?
Answer
Yeah...this can be actually written in this way;
$a\in f^{-1}(B_1\cap B_2)$, means $f(a)\in B_1\cap B_2$ and so $f(a)\in B_1$ and $f(a)\in B_2$. Hence, $a\in f^{-1}(B_1)$ and $a\in f^{-1}(B_2)$
No comments:
Post a Comment