Tuesday, 29 January 2019

calculus - How to evaluate intinftyinftyfracx2exleft(1+exright)2dx




How to evaluate the following integral:



x2ex(1+ex)2dx



So far I know that this function is even, so we can take 0x2ex(1+ex)2dx or 0x2ex(1+ex)2dx and then multiply by 2.



If we substitute x=lnz then 0x2ex(1+ex)2dx=10ln2z(1+x)2dz



And I don't know what to do next.


Answer




Since the function is even, the integral I is



I=20x2ex(1+ex)2dx.



Now, using that



1(1+x)2=n1n(1)n1xn1



it follows that




I=2n1n(1)n0x2enxdx2/n3=4n1(1)n1n2π2/12=π23.



Sum and integral can be interchanged by absolute convergence.



Edit:



0x2enxdx=y=nx1n30eyy2dygamma function Γ(3)=2=2n3



n1(1)n1n2=n odd1n2n even1n2=all n1n22n even1n2=ζ(2)2n11(2n)2=ζ(2)12ζ(2)=π212


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...