Sunday, 6 January 2019

sequences and series - Finding $lim_{ntoinfty}(frac{1}{sqrt{n^2+1}} + frac{1}{sqrt{n^2+2}} + ... + frac{1}{sqrt{n^2+n}})$




I'm trying to find $\lim_{n\to\infty}(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + ... + \frac{1}{\sqrt{n^2+n}})$.




  • I tried to use the squeeze theorem, failed.

  • I tried to use a sequence defined recursively: $a_{n+1} = {a_n} + \frac{1}{\sqrt{(n+1)^2 +n+1}}$. It is a monotone growing sequence, for every $n$, $a_n > 0$. I also defined $f(x) = \frac{1}{\sqrt{(x+1)^2 +x+1}}$. So $a_{n+1} = a_n + f(a_n)$. But I'm stuck.



How can I calculate it?


Answer




It looks squeezable.



\begin{align}
\frac{n}{\sqrt{n^2+n}} \le \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}} \le \frac{n}{\sqrt{n^2+1}}
\\
\\
\frac{1}{\sqrt{1+\frac{1}{n}}} \le \sum_{k=1}^n\frac{1}{\sqrt{n^2+k}} \le \frac{1}{\sqrt{1+\frac{1}{n^2}}}
\end{align}


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...