Greetings I am trying to solve $$\lim_{n\to\infty} n^2\left(\sqrt{1+\frac{1}{n}}+\sqrt{1-\frac{1}{n}}-2\right)$$ Using binomial series is pretty easy: $$\lim_{n\to\infty}n^2\left(1+\frac{1}{2n}-\frac{1}{8n^2}+\mathcal{O}\left(\frac{1}{n^3}\right)+1-\frac{1}{2n}-\frac{1}{8n^2}+\mathcal{O}\left(\frac{1}{n^3}\right)-2\right)=\lim_{n\to\infty}n^2\left(-\frac{1}{8n^2}+\mathcal{O}\left(\frac{1}{n^3}\right)-\frac{1}{8n^2}+\mathcal{O}\left(\frac{1}{n^3}\right)\right)=-\frac{1}{4}$$ The problem is that I need to solve this using only highschool tools, but I cant seem too take it down. My other try was to use L'Hospital rule but I feel like it just complicate things. Maybe there is even an elegant way, could you give me some help with this?
Answer
Hint: multiplying numerator and denominator by $\sqrt{1+1/n}+\sqrt{1-1/n}+2$ we get
$$2 n^2 \frac{\sqrt{1-1/n^2}-1}{\sqrt{1+1/n}+\sqrt{1-1/n}+2}$$ and then do the same with $$\sqrt{1-1/n^2}+1$$
you will get
$$\frac{n^2(2(\sqrt{1-1/n^2}-1))(\sqrt{1-1/n^2}+1)}{(\sqrt{1+1/n}+\sqrt{1-1/n}+2)(\sqrt{1-1/n^2}+1)}$$
No comments:
Post a Comment