Monday, 21 January 2019

calculus - Prove that $arcsin(z)=frac{pi}{2}+ilog(z+isqrt{1-z^2})$



I'm stuck here:




Prove that $w=\arcsin(z)=\frac{\pi}{2}+i\log(z+i\sqrt{1-z^2})$




By using the definition of $z=\sin(w)$, I found that




$$\arcsin(z)=\frac{1}{i}\log(iz+\sqrt{1-z^2})$$



But where that $\frac{\pi}{2}$ comes from? How can I rearrange my expression to have $\frac{\pi}{2}+i\log(z+i\sqrt{1-z^2})$?



Thanks for your time.


Answer



In order to get to the final expression you need to use the log identity:



$$

\ln(a+b)=\ln(a)+\ln(1+\frac{b}{a})
$$



So in your case:



$$
\frac{1}{i}\left[\ln(iz+\sqrt{1-z^2})\right] = \frac{1}{i}\left[\ln(iz) + \ln\left(1+\frac{\sqrt{1-z^2}}{iz}\right)\right]
$$



We know that when $z>0$,




$$
\ln(iz)=\frac{i\pi}{2}+\ln(z)
$$



Also, by doing some algebra:



$
\ln\left(1+\frac{\sqrt{1-z^2}}{iz}\right) = \ln\left(1+\frac{i\sqrt{1-z^2}}{(-1)z}\right) = \ln\left(\frac{z}{z}-\frac{i\sqrt{1-z^2}}{z}\right)
$




$
= \ln\left(\frac{z-i\sqrt{1-z^2}}{z}\right)=\ln\left(z-i\sqrt{1-z^2}\right) - \ln(z)
$



Putting it all together:



$
\frac{1}{i}\left[\ln(z)+\frac{i\pi}{2}+\ln(z-i\sqrt{1-z^2}) -\ln(z)\right]
$




$
=\frac{\pi}{2}+\frac{i}{i^2}\ln(z-i\sqrt{1-z^2}) =
=\frac{\pi}{2}-i\ln(z-i\sqrt{1-z^2})
$



Doing some more algebra:



$
-i\ln(z-i\sqrt{1-z^2}) = i \ln\left(\left(\frac{1}{z-i\sqrt{1-z^2}}\right)\left(\frac{z+i\sqrt{1-z^2}}{z+i\sqrt{1-z^2}}\right)\right)

$



$
= i\ln\left(\frac{z+i\sqrt{1-z^2}}{z^2-i^2(1-z^2)}\right)=i\ln(z+i\sqrt{1-z^2})
$



Hence the expression is true:



$$
\arcsin(z)=\frac{\pi}{2}+i\ln(z+i\sqrt{1-z^2})

$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...