If $a_1, a_2, \ldots, a_n$ are in arithmetic progression whose common difference is $d$,then find the sum:
$$\sin(d) \cdot \left(\csc(a_1)\csc (a_2)+\csc(a_2)\csc (a_3)+\ldots+\csc(a_{n-1})\csc(a_n) \right)$$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment