I have trouble finding the value of the following limit:
$$\lim_{n \to \infty} \sqrt{n} \sin\left({\sqrt{n+3}-\sqrt{n-2}}\right)$$
For now I have rewritten the term into:
$$ \lim_{n \to \infty} \dfrac{\sin\left({\sqrt{n+3}-\sqrt{n-2}}\right)}{\large \frac{1}{\sqrt{n}}}$$
Now I have a limit of type $\large \frac{0}{0}$ so I think I could use L'Hopital's rule. But I would like to know if there is a way you can solve this without using L'Hopital's rule.
Thanks for your answers.
Answer
$\sqrt{n + 3} - \sqrt{n - 2} = \frac{5}{\sqrt{n + 3} + \sqrt{n - 2}}$
This yields the following term:
$$\sqrt{n}\sin(\sqrt{n + 3} - \sqrt{n - 2}) = \frac{5 \sqrt{n}}{\sqrt{n + 3} + \sqrt{n - 2}} \frac{\sin\left(\frac{5}{\sqrt{n + 3} + \sqrt{n - 2}}\right)}{\frac{5}{\sqrt{n + 3} + \sqrt{n - 2}}}$$
Now use the fact that $\frac{\sin(h)}{h} \to 1$ for $h \to 0$ and $\frac{5 \sqrt{n}}{\sqrt{n + 3} + \sqrt{n - 2}} = \frac{5}{\sqrt{1 + 3/n} + \sqrt{1 - 2/n}} \to \frac{5}{2}$.
No comments:
Post a Comment