Friday, 6 March 2015

calculus - Show that $sum_{n=1}^inftyarctanleft(frac{(-1)^n}{(n+1)^{0.25}}right)$ is convergent



Show that $$\sum_{n=1}^\infty\arctan\left(\frac{(-1)^n}{(n+1)^{0.25}}\right)$$ is convergent.



I'm stuck not sure what test I should use, because almost all tests require $a_n$ to be always positive which is not the case here. Do I have to test for absolute convergence instead?


Answer



Note that $\arctan\left(\frac{(-1)^n}{(n+1)^{0.25}}\right)=(-1)^n\arctan\left(\frac1{(n+1)^{0.25}}\right)$. On the other hand, $\left(\arctan\left(\frac1{(n+1)^{0.25}}\right)\right)_{n\in\mathbb N}$ is a decreasing sequence, which converges to $0$. Therefore, you can apply Dirichlet's test.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...