Monday, 9 March 2015

calculus - Without using L'Hospital rule or series expansion find $lim_{xto0} frac{x-xcos x}{x-sin x}$.



Is it possible to find $\displaystyle{\lim_{x\to 0} \frac{x-x\cos x}{x-\sin x}}$ without using L'Hopital's Rule or Series expansion.






I can't find it.If it is dublicated, sorry :)


Answer




$$\dfrac{x(1-\cos x)}{x-\sin x}=\dfrac{x^3}{x-\sin x}\cdot\dfrac1{1+\cos x}\left(\dfrac{\sin x}x\right)^2$$



For $\lim_{x\to0}\dfrac{x^3}{x-\sin x}$ use Are all limits solvable without L'Hôpital Rule or Series Expansion


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...