Saturday, 7 March 2015

Characteristic Polynomial linear math

Let $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$
be a matrix of complex numbers. Find the characteristic polynomial $\chi_A(t)$ of $A$ and compute $\chi_A(A)$.



I just wanted to confirm that I did this correctly.



Tha answer I have is:
$$\chi_A(t)= \det\begin{pmatrix}a-t&b\\c&d-t\end{pmatrix}
=(a-t)(d-t)-bc
=ad-bc-at-dt+t^2.

$$
Thus
$$
\chi_A(A)=
\begin{pmatrix}a-(ad-bc-at-dt+t^2)&b\\c&d-(ad-bc-at-dt+t^2)\end{pmatrix}
$$



Is this the right thinking?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...