Sunday, 1 March 2015

Check if the following series diverges or converges



Check if the following series diverges or converges:
$$
\sum_{n=2}^{\infty}\frac{1}{\log(n)^2}
$$
I know that I'm able to compute it using Integral test... But can I use Limit comparison test, with my $b_n = \log(n)^2$?



I know that the series with the sequence $b_n$ is divergent by the test of divergence ($\lim_{n\rightarrow \infty} b_n \neq 0$).




Applying the limit comparison test I'll get:
$$
\lim_{n\rightarrow \infty}\frac{1}{\frac{\log(n)^2}{\log(n)^2}}\\
\lim_{n\rightarrow \infty}\frac{1}{1} = 1
$$



And because of that my first series $\sum_{n=2}^\infty \frac{1}{\log(n)^2}$ will diverge too.



Is that correct?!




Thanks!


Answer



You have not applied the limit comparison test correctly. It should read



$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{\frac1{\log^2(n)}}{\log^2(n)}\lim_{n\to\infty}=\lim_{n\to\infty}\frac1{\log^4(n)}=0$$



And the limit comparison test does not work for limits that end up to be infinite or $0$.







We have the Cauchy condensation test:



$$\sum_{n=2}^\infty\frac1{\log^2(n)}>\sum_{n=1}^\infty\frac{2^n}{\log^2(2^n)}=\frac1{\log^2(2)}\sum_{n=1}^\infty\frac{2^n}{n^2}$$



Now all you need is the term test to finish this off.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...