My friend ask me to construct a function with infinite discontinuity of second kind(i.e. one of $\lim_{x\to x_0^-}f(x)$ and $\lim_{x\to x_0^+}f(x)$ doesn't exists) defined on $[0,1]$, such that the rational numbers are discontinuity of second kind and the irrational numbers are all continuous.
I have some idea of constructing it,but not sure if this is right. Consider the mapping $E=\{1,1/2,1/4...1/2^n...\}$, $g:\mathbb{Q}\to E$ and $g$ is a bijection. We define $f$ to be
$$f(x)=\sum_{q_i\in\mathbb{Q},q_i
Answer
First, the "$q_i $f(x)=\displaystyle\sum_{q_i\in\mathbb{Q}}\frac{1}{2^i}\sin\left(\frac{1}{x-q_i}\right)$. Fix some rational $q_M\in[0,1]$. Then write $f(x)=f_M(x)+\widehat{f_M}(x)$, where $f_M(x)=\frac{1}{2^M}\sin\left(\frac{1}{x-q_M}\right)$, and $\widehat{f_M}(x)=\displaystyle\sum_{q_i\in\mathbb{Q},i\neq M}\frac{1}{2^i}\sin\left(\frac{1}{x-q_i}\right)$. It is clear that $\lim_{x\to {q_M}^+}f_M(x)$ and $\lim_{x\to {q_M}^-}f_M(x)$ do not exist, so to show that $\lim_{x\to {q_M}^+}f(x)$ and $\lim_{x\to {q_M}^-}f(x)$ also do not exist, it suffices to show that $\widehat{f_M}$ is continuous at $q_M$. Fix some $\epsilon>0$. Choose some $N>0$ such that $\displaystyle\sum_{i=N}^{\infty}\frac{1}{2^i}<\frac{\epsilon}{2}$. Now choose some $\delta>0$ such that if $|x-q_M|<\delta$, $\displaystyle Then for $|x-q_M|<\delta$, $|\widehat{f_M}(x)-\widehat{f_M}(q_M)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$, so $\widehat{f_M}$ is continuous at $q_M$. Therefore we conclude that neither $\lim_{x\to {q_M}^+}f(x)$ nor $\lim_{x\to {q_M}^-}f(x)$ exist. (Note that an almost identical argument will show that $f$ is continuous at each non-rational point in $[0,1]$.)
\left|\sum_{i=1}^{N-1}\frac{1}{2^i}\sin\left(\frac{1}{q_M-q_i}\right)-\sum_{i=1}^{N-1}\frac{1}{2^i}\sin\left(\frac{1}{x-q_i}\right)\right|<\frac{\epsilon}{2}.
$
No comments:
Post a Comment