Sunday, 30 December 2018

Complex integration: choosing a contour without divergences

How should I pick the contour to compute the integral
$$\int_{-a}^a\frac{1-z}{\sqrt{(z-a)(z+a)}}\mathrm d z\,, $$
where $a$ is a real number?




My problem is that when I choose a keyhole contour around the cut $(-a,a)$, the big circle with radius $R$ going to infinity diverges. The integrand goes as
$$\frac{1-z}{\sqrt{(z-a)(z+a)}} \sim i-\frac{i}{z}+i\frac{ a^2}{2 z^2}+O\left(\frac{1}{z^3}\right)\,,$$
for $|z|\rightarrow \infty$ and thus
$$ \lim_{R\rightarrow \infty}\int_R\frac{1-z}{\sqrt{(z-a)(z+a)}}\mathrm d z < \lim_{R\rightarrow\infty}( i\times (2\pi R))=\infty\,.$$



But I know that the answer is finite as



$$\int_{-a}^a\frac{1-z}{\sqrt{(z-a)(z+a)}}\mathrm d z =\pi\,. $$



Where am I doing something wrong?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...