I am an alien towards compelx analysis, with very little know I am posing a question, who someone may want to help with.
Evaluate:
14⋅∞∑n=1(−1)nn2
In disguise this is similar to ζ(2) but how can this be done using residues, and complex analysis?
I need some help. I am just interested.
The answer is π248
Answer
Using \boldsymbol{\pi\csc(\pi z)}
Since \pi\csc(\pi z) has residue (-1)^n at z=n for n\in\mathbb{Z}, we will use the contours
\gamma_\infty=\lim\limits_{R\to\infty}Re^{2\pi i[0,1]}\qquad\text{and}\qquad\gamma_0=\lim\limits_{R\to0}Re^{2\pi i[0,1]}
To sum over all n\in\mathbb{Z} except n=0, we use the difference of the contours, which circles the non-zero integers once counter-clockwise.
\begin{align} 2\sum_{n=1}^\infty\frac{(-1)^n}{n^2} &=\frac1{2\pi i}\left(\int_{\gamma_\infty}\frac{\pi\csc(\pi z)}{z^2}\mathrm{d}z-\int_{\gamma_0}\frac{\pi\csc(\pi z)}{z^2}\mathrm{d}z\right)\\ &=\color{#C00000}{\frac1{2\pi i}\int_{\gamma_\infty}\frac{\pi\csc(\pi z)}{z^2}\mathrm{d}z}-\operatorname*{Res}_{z=0}\left(\color{#00A000}{\frac{\pi\csc(\pi z)}{z^2}}\right)\\ &=\color{#C00000}{0}-\operatorname*{Res}_{z=0}\left(\color{#00A000}{\frac1{z^2}\frac\pi{\pi z-\pi^3z^3/6+O\left(z^5\right)}}\right)\\ &=\color{#C00000}{0}-\operatorname*{Res}_{z=0}\left(\color{#00A000}{\frac1{z^3}+\frac{\pi^2}{6z}+O(z)}\right)\\ &=-\frac{\pi^2}6 \end{align}
because, for k\in\mathbb{Z} and |z|=\pi\left(k+\frac12\right), |\csc(z)|\le1.
Therefore,
\sum_{n=1}^\infty\frac{(-1)^n}{n^2}=-\frac{\pi^2}{12}
Extending A Previous Result
In this answer, it is shown that
\sum_{k=1}^\infty\frac1{k^2}=\frac{\pi^2}6
Note that
\begin{align} \hphantom{=}&\frac1{1^2}{+}\frac1{2^2}+\frac1{3^2}{+}\frac1{4^2}+\frac1{5^2}{+}\frac1{6^2}+\frac1{7^2}+\dots\\ \hphantom{=}&\hphantom{\frac1{1^2}}\color{#C00000}{-\frac2{2^2}\hphantom{+\frac1{3^2}}-\frac2{4^2}\hphantom{+\frac1{5^2}}-\frac2{6^2}\hphantom{+\frac1{7^2}}-\dots}\\ =&\frac1{1^2}{-}\frac1{2^2}+\frac1{3^2}{-}\frac1{4^2}+\frac1{5^2}{-}\frac1{6^2}+\frac1{7^2}-\dots \end{align}
where the series in red is two times one quarter of the series above it; that is, one half of the series above it. Therefore, the alternating series is one half of the non-alternating series; that is,
\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^2}=\frac{\pi^2}{12}
No comments:
Post a Comment