If sides $a$, $b$, $c$ of $\triangle ABC$ (with $a$ opposite $A$, etc) are in arithmetic progression, then prove that
$$3\tan\frac{A}{2}\tan\frac{C}{2}=1$$
My attempt:
$a$, $b$, $c$ are in arithmetic progression, so
$$\begin{align}
2b&=a+c \\[4pt]
2\sin B &= \sin A+ \sin C \\[4pt]
2\sin(A+C) &=2\sin\frac {A+C}{2}\;\cos\frac{A-C}{2} \\[4pt]
2\sin\frac{A+C}{2}\;\cos\frac{A+C}{2}&=\sin\frac{A+C}{2}\;\cos\frac{A-C}{2} \\[4pt]
2\cos\frac{A+C}{2}&=\cos\frac{A-C}{2}
\end{align}$$
Answer
Expand your last line: $$2\left(\cos\frac A2\cos\frac C2 - \sin\frac A2\sin\frac C2\right)=\left(\cos\frac A2\cos\frac C2 +\sin\frac A2\sin\frac C2\right)$$
and your result is immediate after a cancellation.
No comments:
Post a Comment