Thursday, 26 September 2019

elementary number theory - if $pmid a$ and $pmid b$ then $pmid gcd(a,b)$


I would like to prove the following property :




$$\forall (p,a,b)\in\mathbb{Z}^{3} \quad p\mid a \mbox{ and } p\mid b \implies p\mid \gcd(a,b)$$




Knowing that :



Definition




Given two natural numbers $a$ and $b$, not both zero, their greatest common divisor is the largest divisor of $a$ and $b$.






  • If $\operatorname{Div}(a)$ denotes the set of divisors of $a$, the greatest common divisor of $a$ and $b$ is $\gcd(a,b)=\max(\operatorname{Div}(a)\cap\operatorname{Div}(b))$

  • $$d=\operatorname{gcd}(a,b)\iff \begin{cases}d\in \operatorname{Div}(a)\cap\operatorname{Div}(b) & \\ & \\ \forall x \in \operatorname{Div}(a)\cap\operatorname{Div}(b): x\leq d \end{cases}$$

  • $$\forall (a,b) \in \mathbb{N}^{2}\quad a\mid b \iff Div(a) \subset Div(b)$$

  • $$\forall x\in \mathbb{Z}\quad \operatorname{Div}(x)=\operatorname{Div}(-x) $$

  • If $a,b\in\mathbb{Z}$, then $\gcd(a,b)=\gcd(|a|,|b|)$, adding $\gcd(0,0)=0$



Indeed,




Let $(p,a,b)\in\mathbb{Z}^{3} $ such that $p\mid a$ and $p\mid b$ then :



$p\mid a \iff \operatorname{Div}(p)\subset \operatorname{Div}(a)$ and $p\mid b \iff \operatorname{Div}(p)\subset \operatorname{Div}(b)$ then



$\operatorname{Div}(p)\subset \left( \operatorname{Div}(a)\cap \operatorname{Div}(b)\right) \iff p\mid \gcd(a,b)$



Am I right?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...