I'm studying about uniform convergence of function sequences. I haven't been able to prove that
limn→∞(cos(x√n))n=e−x22.
Can you help me, please?
Answer
Alternatively limn→∞(cos(x√n))n=exp(limn→∞nln(cos(x√n)))==exp(limn→∞ln(cos(x√n))1n)L′Hopital=exp(limn→∞−sin(x√n)cos(x√n)−1n2(−x2n√n))==exp(−limn→∞tan(x√n)√n2xx2)=e−x22
No comments:
Post a Comment